Outline
Starting Point: Leidenfrost Effect on a Liquid Substrate
Starting Point: Leidenfrost Effect on a Liquid Substrate
Superposition of 40 frames over an elapsed time of 1 second of an acetone droplet in a Leidenfrost state on water heated to approximately 75 degrees celsius. The white dashed line shows the undisturbed free surface. The tube visible at the far left is the deposition point, the droplets are approximately a 3 and 2.6 mm in diameter.
Analogous Soap Film Experiments
\(90^{\circ}\)
\(85^{\circ}\)
\(80^{\circ}\)
\(55^{\circ}\)
A glass cover slip (dimensions 18x18 mm and 0.15 mm thick) piercing a soap film at different relative angles.
First Gravity Mediated Assembly
Gravity mediated assembly process
Catenoid
\[ y = a \cosh \left( \frac{x}{a} \right) \]
Goldschmidt solutions
The red region represents combinations of R* and h* yielding Goldschmidt solutions, and in blue are pairs for which a catenoid solution exists. The inset images are simulation results for R*=0.5 and h*=0.91, 0.915 corresponding to catenoidal and Goldschmidt solutions.
Calculus of variations formulation
\[ \begin{align} \mathcal{E} (R,h) &= \int_{0}^{l}2 \sigma( 2\pi R) ds - m g h \nonumber\\ &= \int_{0}^{h}\left[ 4\pi\sigma R\sqrt{1 + (R')^2}\right] \,dz - m g h \nonumber \end{align} \]
Variations \(R+\epsilon\eta\) and \(h+\epsilon k\) are considered for some parameter \(\epsilon\ll1\) with two constraints on the variations.
\[ \eta (0) = 0 \qquad \qquad \eta (h) = -k R'(h) \]
First Variation Condition and BVP
The first-variation condition for the energy functional can be written as \[ \begin{equation} \scriptsize{ 0=\bbox[5px, border: 2px solid red]{\int_{0}^{h} 4\pi\sigma \eta \left[ \sqrt{1 + (R')^2} - \frac{\mathrm{d}}{\mathrm{d} z} \left(\frac{R R'}{\sqrt{1 + (R')^2}}\right)\right] \,dz} + \bbox[5px, border: 2px solid blue]{ k\left[ 4\pi\sigma R_i\sqrt{1 + (R'(h))^2} - mg - \frac{4 \pi \sigma R_i (R'(h))^2}{\sqrt{1 + (R'(h))^2}} \right]} } \end{equation} \]
with the following corresponding terms of the boundary value problem \[ \begin{equation} \bbox[5px, border: 2px solid red]{0 = 1 + R'(z)^2 - R(z)R''(z)} \end{equation} \]
\[ \begin{equation} \bbox[5px, border: 2px solid blue]{(R'(h))^2 = \frac{1}{B^{2}} - 1} \end{equation} \]
Where the Bond number of the system is given by \(B=mg/ 4\pi\sigma R_i\) and \(R(0)=R_i\) is the boundary condition at the supporting ring.
Closed form solution
\[ \begin{equation} R(z) = \frac{mg}{4\pi\sigma} \cosh\left( \frac{4\pi\sigma z}{mg}+\cosh^{-1}\left(\frac{4\pi\sigma R_o}{mg}\right) \right) \end{equation} \]
Evaluating the above equation at \((R_i,h)\) and solving for \(h\) yields \[ \begin{equation} h = \frac{mg}{4\pi\sigma}\left[ \cosh^{-1}\left(\frac{4\pi\sigma R_i}{mg}\right)-\cosh^{-1}\left(\frac{4\pi\sigma R_o}{mg}\right)\right] \end{equation} \]
Letting \( R^*=R_i /R_o \) and \( h^*=h /R_o \) in addition to \(B=mg/ 4\pi\sigma R_i\) \[ \begin{equation} \bbox[5px, border: 2px solid red] { h^* = B R^* \left(\cosh^{-1}\frac{1}{B}-\cosh^{-1}\frac{1}{B R^*}\right) } \end{equation} \]
Contour Plot
\[ \scriptsize{ \begin{equation} h^* = B R^* \left(\cosh^{-1}\frac{1}{B}-\cosh^{-1}\frac{1}{B R^*}\right) \end{equation} } \]
Experimental results of suspended rings
Platonic solid geometries
Platonic solid geometries
Surface Evolver simulations
Gravity-mediated assemblies phase space
Displacement-driven assembly setup
Rectangular prisms
\[ \begin{equation} \mathcal{T}_g=\frac{Lmg\cos\theta}{2}, \qquad \mathcal{T}_\sigma=2Lw\sigma\cos(\theta+\phi), \qquad B_t = \frac{mg}{4w\sigma} \end{equation} \]
Surface Evolver simulations of transient tile angles
Surface Evolver simulations compared to experimental results
Addition of mathematical model
Effective radius for prismatic pinch-off
Effective radius for pyramidal pinch-off
Soap film mediated assembly
Additional geometries
Thank you!
Thank you!
ありがとうございます
Surface Evolver simulations
Examples of refinement (r) and iteration (g) operations within a Surface Evolver simulation of a catenoid where R*=0.5 and h*=0.9.
Calculus of variations formulation continued
Let \(\mathcal{F}\) be defined by \(\mathcal{F} ( \epsilon) =\mathcal{E}(R+\epsilon\eta,h+\epsilon k)\) \[ \begin{align} \mathcal{F} &= \int_{0}^{h + \epsilon k}\left[ 4\pi\sigma (R+\epsilon \eta)\sqrt{1 + (R'+\epsilon \eta')^2} \right] \,dz - mg(h+\epsilon k) \\ \end{align} \]
Granted that R and h correspond to a minimum of the potential energy functional, the Gateaux derivative of \(\mathcal{F} \) must vanish at \(\epsilon=0\): \[ \begin{equation} \frac{\mathrm{d}\mathcal{F}(\epsilon)}{\mathrm{d}\epsilon}\bigg|_{\epsilon=0}=0 \end{equation} \]
Two constraints on the variations arise from the boundary conditions \[ \eta (0) = 0 \qquad \qquad \eta (h) = -k R'(h) \]
Verification of Surface Evolver simulations
Model of transient tile angle
The equilibrium condition \(\mathcal{T}_g=\mathcal{T}_\sigma \) can be expressed as \[ \begin{equation} B_t = \frac{mg}{4 w \sigma}=\frac{\cos(\phi+\theta)}{\cos\theta} \end{equation} \]
Under the assumption that a cross-section of the soap film can be represented as a catenary curve \[ \scriptsize{ \begin{equation} d^* = (R^*+L^*\cos\theta) g(B_t,\theta)\Big[ \cosh^{-1} \left(\frac{1}{g(B_t,\theta)}\right) - \cosh^{-1} \left( \frac{1}{ (R^*+L^*\cos\theta) g(B_t,\theta) }\right) \Big] + L^*\sin\theta \end{equation} } \]
where the function \( g(B_t,\theta) \) is given by \[ \begin{equation} g(B_t,\theta)=\cos[\cos^{-1} ( B_t\cos\theta)-\theta], \qquad 0\le B_t\le1.1547, \qquad -\frac{\pi}{6}\le\theta\le\frac{\pi}{2} \end{equation} \]
Transient tile angle experiments
Competition between torques due to gravity and surface tension
Surface Evolver simulations compared to experimental results
Displacement driven octahedral assembly
Displacement driven pentagonal prism assembly
Pentagonal prism reversibility
Displacement driven pentagonal pyramid assembly
Pentagonal pyramid reversibility